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Modeling Stock Returns and Pricing Options 
 

Overview 

 

The distribution of a stock’s returns can be just as important as its expected return.  Accurately 

modeling the distribution helps us measure the risk of the investment.  It is also critical in pricing 

derivatives such as options.  This paper will examine how different distributions can be fit to a 

stock’s empirical returns.  A T-distribution is shown to fit this data set best.  Splitting the 

distribution and modeling the positive returns separately from the negative returns can also add 

value.  We will then examine how these distributions can be used to price options, but 

conclusions about the profitability of trading on such a method will require further investigation. 

 

Modeling Stock Returns 

 

The VOO fund was examined since it tracks the S&P 500 (and since Yahoo stock data had that 

annoying-ass error the other week).  1-day log returns for this fund have the distribution shown: 

 

 
Mean = 0.0004647934 

Sd   = 0.00907076 

 

Several distributions were fit to these returns.  Log-likelihood results are below: 

 
      name   loglik  notes 
1        t 5861.753  location=0.0007369255, scale=0.005814103, df=2.999417 
2 logistic 5824.292  location=0.0006537631, scale=0.004706983 
3   cauchy 5739.547  location=0.0006721006, scale=0.004105272 
4   normal 5707.676  mean    =0.0004647934, sd   =0.0907076 

 

As shown, the T-distribution is the best fit for these returns.  The normal distribution – which is 

widely used in academic circles – is actually the worst of the four options.  The PDF for each 

distribution is plotted over the empirical distribution in the chart below.  Notice how the normal 

distribution fails to capture both the central mass of the distribution as well as its long tails.  The 
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t-distribution captures this shape much better, pulling close to gather the middle while still going 

wide in the tails. 

 

 

 

 
Even visually, we can see how the negative returns have a much longer tail than the positive 

side.  For this reason, it may make sense to split the distribution in half and build separate 

distributions for the upper and lower returns.  We do this for each of the four returns and get: 

  
           name   loglik 
        t-split 5865.367 
 logistic-split 5825.133 
   cauchy-split 5740.614 
   normal-split 5712.015 

 

 
Once again, the t-distribution is the best fit.  Splitting the distribution in half improved the score 

slightly.  The parameters for each half of the t-distribution are: 
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Tail Location Scale DF 

lower 0.0005545295 0.005358364 2.375896 

upper 0.0005545295 0.006277177 3.837722 

 

As might be expected, the degrees of freedom parameter is lower for the negative tail.  This will 

extend the lower tail and make it “fatter” than the upper tail.  The upper tail does have a larger 

scale variable though. 

 

If we take into account the extra number of parameters we’ve created, splitting the distribution 

may not be warranted.  The AIC is shown for each fit below. This takes into account the number 

of parameters in each model and penalizes both the t and t-split distribution for their extra 

parameters.  When this is taken into account, the simple, non-split t-distribution appears best. 
 

           name   loglik params    akaike 

              t 5861.753      3 -5855.753 <- best 

       logistic 5824.292      2 -5820.292 

         cauchy 5739.547      2 -5735.547 

         normal 5707.676      2 -5703.676 

 
           name   loglik params    akaike 

        t-split 5865.367      6 -5853.367 <- 2nd best 

 logistic-split 5825.133      4 -5817.133 

   cauchy-split 5740.614      4 -5732.614 

   normal-split 5712.015      4 -5704.015 

 

The practitioner will need to determine if the split is warranted.  In the next section we will look 

at the same stock returns over 30 days.  In this case, the split distribution does appear best, as 

shown in the scores below: 

 
           name   loglik params    akaike 

              t 3176.146      3 -3170.146 <- 2nd best 

       logistic 3168.327      2 -3164.327 

         normal 3110.153      2 -3106.153 

         cauchy 2989.924      2 -2985.924 

 

           name   loglik params    akaike 

        t-split 3212.097      6 -3200.097 <- best 

 logistic-split 3192.817      4 -3184.817 

   normal-split 3162.528      4 -3154.528 

   cauchy-split 2986.870      4 -2978.870 

 

Pricing Options 

 

So how do these different distributions affect how we might price options?  The tables below 

show the prices of options on the VOO fund on August 4, 2017.  The current price of the fund on 

this date was $227.26. 
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There are 6 weeks – or 30 trading days – until these options expire.  Stock returns over 30 days 

were calculated and distributions fit to them.  Results are below.  Once again, the t-distribution 

provided the best fit: 

 

 
 
      name   loglik 
1        t 3176.146 
2 logistic 3168.327 
3   normal 3110.153 
4   cauchy 2989.924 
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As mentioned earlier, the split t-distribution provides an even better fit, even after accounting for 

the additional parameters.  When we use any of these distributions to price options, we end up 

with very different prices than those observed in the market: 

 

Calls: 

 

  Implied Volatility  Price 

Strike Ask Yahoo! GBS   Normal T Split-T 

230 1.15 7.30% 7.16%  3.85 4.08 4.12 

235 0.25 7.44% 7.28%  1.83 1.92 1.98 

 

Puts: 

 

  Implied Volatility  Price 

Strike Ask Yahoo! GBS   Normal T Split-T 

199 0.35 23.68% 23.19%  0.0002 0.03 0.06 

200 0.40 23.61% 23.11%  0.0004 0.03 0.06 

205 0.50 20.92% 20.49%  0.004 0.05 0.09 

210 0.60 17.88% 17.51%  0.02 0.10 0.14 

215 0.90 15.67% 15.34%  0.13 0.21 0.24 

220 1.20 12.46% 12.20%  0.51 0.48 0.49 

225 2.25 10.65% 10.42%  1.47 1.16 1.17 

230 3.80 6.98% 6.83%  3.35 2.71 2.75 

 

The strike price, ask price, and implied volatility come from Yahoo! Finance.  The GBS implied 

volatility is calculated using the “fOptions” package in R.  As an example: 

 
> GBSVolatility(1.15, "c", 227.26, 230, 30/250, 0.00, 0.00) 

[1] 0.07155463 

 

The formula above uses a risk-free rate of 0% since this more closely matched the results given 

by Yahoo.  The 1-month treasury yield is currently 1%.  If we use this in the model instead of a 

0% risk-free return, we get results that differ even more from Yahoo’s results: 
 

> GBSVolatility(1.15, "c", 227.26, 230, 30/250, 0.01, 0.01) 

[1] 0.06848211 

 

The calculated volatilities match those from Yahoo rather closely.  The actual mean and standard 

deviation of these returns is 1.3% and 3.9%.  Annualized, these are 11.13% and 11.32%.  If we 

examine returns over 250 days, we see a mean of 10.11% and a standard deviation of 8.01%.  

This latter value seems closer to the implied volatilities near the money, but this seems low 

compared to historical averages. 
 

The table of prices (above) were calculated by taking 1,000,000 random samples from each 

distribution.  The following R code then calculates the expected value of an option with a current 

price of S and exercise price X: 
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S <- 227.26 

X <- 235 

TypeFlag <- "c"  # “c” = call, “p” = put 

r.sample <- result$fits[['t-split']]$sample(1000000) 

S.T.sample <- S * exp(r.sample) 

V.T.sample <- switch(TypeFlag, 

  c=pmax(0, S.T.sample-X), 

  p=pmax(0, X-S.T.sample) 

  ) 

mean(V.T.sample) 

 

The results above imply that the call options are under-valued quite significantly.  The 230 call 

option is valued at $3.85 - $4.12 even though the market price is $1.15.  The 235 call option is 

valued at $1.83 - $1.98 while the market is at $0.25.  This makes sense when we notice that the 

average 30-day return is 1.3%.  The expected value of the stock is then $230.32.  There’s a 50% 

chance that the option will expire in the money, and the upside averages out to more than $1.15.  

Conversely, it appears that the put options are over-valued.  The market is placing a much higher 

probability than we would that the stock will drop by more than 10% to 200. 

 

It is well-known that empirical distributions under-estimate the probability of large losses – those 

“Black Swan” events that may still occur even though nothing like them is in our 10 years of 

sample data.  This would make us hesitate to purchase any of these put options.  However, 

should we consider buying call options?  For whatever reason, the market option prices imply 

that this fund has much less upward potential than history would suggest.  This is likely due to 

the high valuations out in the market today.  Once again, the trader is left to determine whether 

the historical model is a good predictor of the future, or is the market taking into account other 

factors and producing prices that are better than those based on historical returns. 

 

Conclusion 

 

Further investigation is required to determine which is a better method for pricing options.  If we 

fit probability distributions to historical returns and use these to estimate the future value of an 

option, can we identify mis-pricing opportunities?  Or does the market know something that we 

do not know?  In either case, it will still be important to be able to model the distributions of 

stock returns.  Even if we are just forecasting stock prices, our model of the error distribution 

will help us quantify risk and uncertainty in our forecasts.  For this purpose, a T-distribution 

seems best.  Splitting the data and modeling the upside returns separately from the downside 

returns was also shown to add value in some cases. 


